Abstract
3D MRI Brain Tumor Segmentation is of great significance in clinical diagnosis and treatment. Accurate segmentation results are critical for localization and spatial distribution of brain tumors using 3D MRI. However, most existing methods mainly focus on extracting global semantic features from the spatial and depth dimensions of a 3D volume, while ignoring voxel information, inter-layer connections, and detailed features. A 3D brain tumor segmentation network SDV-TUNet (Sparse Dynamic Volume TransUNet) based on an encoder–decoder architecture is proposed to achieve accurate segmentation by effectively combining voxel information, inter-layer feature connections, and intra-axis information. Volumetric data is fed into a 3D network consisting of extended depth modeling for dense prediction by using two modules: sparse dynamic (SD) encoder–decoder module and multi-level edge feature fusion (MEFF) module. The SD encoder–decoder module is utilized to extract global spatial semantic features for brain tumor segmentation, which employs multi-head self-attention and sparse dynamic adaptive fusion in a 3D extended shifted window strategy. In the encoding stage, dynamic perception of regional connections and multi-axis information interactions are realized through local tight correlations and long-range sparse correlations. The MEFF module achieves the fusion of multi-level local edge information in a layer-by-layer incremental manner and connects the fusion to the decoder module through skip connections to enhance the propagation ability of spatial edge information. The proposed method is applied to the BraTS2020 and BraTS2021 benchmarks, and the experimental results show its superior performance compared with state-of-the-art brain tumor segmentation methods. The source codes of the proposed method are available at https://github.com/SunMengw/SDV-TUNet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.