Abstract

We propose an online dehazing method with sparse depth priors using an incremental Gaussian Process (iGP). Conventional approaches focus on achieving single image dehazing by using multiple channels. In many robotics platforms, range measurements are directly available, except in a sparse form. This paper exploits direct and possibly sparse depth data in order to achieve efficient and effective dehazing that works for both color and grayscale images. The proposed algorithm is not limited to the channel information and works equally well for both color and gray images. However, efficient depth map estimations (from sparse depth priors) are additionally required. This paper focuses on a highly sparse depth prior for online dehazing. For efficient dehazing, we adopted iGP for incremental depth map estimation and dehazing. Incremental selection of the depth prior was conducted in an information-theoretic way by evaluating mutual information (MI) and other information-based metrics. As per updates, only the most informative depth prior was added, and haze-free images were reconstructed from the atmospheric scattering model with incrementally estimated depth. The proposed method was validated using different scenarios, color images under synthetic fog, real color, and grayscale haze indoors, outdoors, and underwater scenes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.