Abstract
Extensive studies have demonstrated that the representations of convolutional neural networks (CNN), which are learned from a large-scale data set in the source domain, can be effectively transferred to a new target domain. However, compared to the source domain, the target domain often has limited data in practice. In this case, overfitting may significantly depress transferability, due to the model redundancy of the intensive CNN structures. To deal with this difficulty, we propose a novel sparse deep transfer learning approach for CNN. There are three main contributions in this work. First, we introduce a Sparse-SourceNet to reduce the redundancy in the source domain. Second, we introduce a Hybrid-TransferNet to improve the generalization ability and the prediction accuracy of transfer learning, by taking advantage of both model sparsity and implicit knowledge. Third, we introduce a Sparse-TargetNet, where we prune our Hybrid-TransferNet to obtain a highly-compact, source-knowledge-integrated CNN in the target domain. To examine the effectiveness of our methods, we perform our sparse deep transfer learning approach on a number of benchmark transfer learning tasks. The results show that, compared to the standard fine-tuning approach, our proposed approach achieves a significant pruning rate on CNN while improves the accuracy of transfer learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.