Abstract
AbstractDrive circuit is a critical part of instrumentation and control systems in nuclear reactors, and its performance directly influences the operation of nuclear reactors. However, comparing with the open circuit IGBT faults, soft faults caused by the degradation of electronic components present much slighter fluctuations to the performance of drive circuits. If the two fault modes co‐exist, traditional fault diagnosis models are prone to misclassify soft faults as the normal condition. To improve the accuracy of fault diagnosis of drive circuits, it necessitates to accurately locate the faults of drive circuits, while effectively extracting the distinguishable fault features is one of the critical factors for fault location. In this article, a fault location method combining the empirical modal decomposition (EMD) algorithm and sparse convolutional autoencoder (SCAE) is proposed. The EMD algorithm is applied to decompose the three‐phase current signals of drive circuits. An SCAE‐based feature extractor is constructed to capture high‐dimensional and sparse fault feature data with the aid of the powerful feature autonomic extraction capability of deep learning. A deep classifier is designed to locate faults in the driver circuit. A fault simulation model of the drive circuit is developed and the monitor data is collected. The effectiveness of the proposed method is validated via a real case of drive circuit in nuclear reactors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.