Abstract
AbstractOrdinal classification is an important area in statistical machine learning, where labels exhibit a natural order. One of the major goals in ordinal classification is to correctly predict the relative order of instances. We develop a novel concordance‐based approach to ordinal classification, where a concordance function is introduced and a penalized smoothed method for optimization is designed. Variable selection using the penalty is incorporated for sparsity considerations. Within the set of classification rules that maximize the concordance function, we find optimal thresholds to predict labels by minimizing a loss function. After building the classifier, we derive nonparametric estimation of class conditional probabilities. The asymptotic properties of the estimators as well as the variable selection consistency are established. Extensive simulations and real data applications show the robustness and advantage of the proposed method in terms of classification accuracy, compared with other existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.