Abstract

AbstractSupport vector machine (SVM) techniques and deep learning have been prevalent in object classification for many years. However, deep learning is computation-intensive and can require a long training time. SVM is significantly faster than Convolution Neural Network (CNN). However, the SVM has limited its applications in the mid-size dataset as it requires proper tuning. Recently the parameterization of multiple kernels has shown greater flexibility in the characterization of the dataset. Therefore, this paper proposes a sparse coded multi-scale approach to reduce training complexity and tuning of SVM using a non-linear fusion of kernels for large class natural scene classification. The optimum features are obtained by parameterizing the dictionary, Scale Invariant Feature Transform (SIFT) parameters, and fusion of multiple kernels. Experiments were conducted on a large dataset to examine the multi-kernel space capability to find distinct features for better classification. The proposed approach founds to be promising than the linear multi-kernel SVM approaches achieving 91.12 % maximum accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.