Abstract
Ultrasound localization microscopy (ULM) has recently enabled the mapping of the cerebral vasculature in vivo with a resolution ten times smaller than the wavelength used, down to ten microns. However, with frame rates up to 20000 frames per second, this method requires large amount of data to be acquired, transmitted, stored, and processed. The transfer rate is, as of today, one of the main limiting factors of this technology. Herein, we introduce a novel reconstruction framework to decrease this quantity of data to be acquired and the complexity of the required hardware by randomly subsampling the channels of a linear probe. Method performance evaluation as well as parameters optimization were conducted in silico using the SIMUS simulation software in an anatomically realistic phantom and then compared to in vivo acquisitions in a rat brain after craniotomy. Results show that reducing the number of active elements deteriorates the signal-to-noise ratio and could lead to false microbubbles detections but has limited effect on localization accuracy. In simulation, the false positive rate on microbubble detection deteriorates from 3.7% for 128 channels in receive and 7 steered angles to 11% for 16 channels and 7 angles. The average localization accuracy ranges from 10.6 μm and 9.93 μm for 16 channels/3 angles and 128 channels/13 angles respectively. These results suggest that a compromise can be found between the number of channels and the quality of the reconstructed vascular network and demonstrate feasibility of performing ULM with a reduced number of channels in receive, paving the way for low-cost devices enabling high-resolution vascular mapping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.