Abstract
Adversarial attacks on video recognition models have been explored recently. However, most existing works treat each video frame equally and ignore their temporal interactions. To overcome this drawback, a few methods try to select some key frames and then perform attacks based on them. Unfortunately, their selection strategy is independent of the attacking step, therefore the resulting performance is limited. Instead, we argue the frame selection phase is closely relevant with the attacking phase. The key frames should be adjusted according to the attacking results. For that, we formulate the black-box video attacks into a Reinforcement Learning (RL) framework. Specifically, the environment in RL is set as the recognition model, and the agent in RL plays the role of frame selecting. By continuously querying the recognition models and receiving the attacking feedback, the agent gradually adjusts its frame selection strategy and adversarial perturbations become smaller and smaller. We conduct a series of experiments with two mainstream video recognition models: C3D and LRCN on the public UCF-101 and HMDB-51 datasets. The results demonstrate that the proposed method can significantly reduce the adversarial perturbations with efficient query times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.