Abstract

In this paper, a large set of macroeconomic and financial predictors is used to forecast U.S. recession periods. We propose a sparse Bayesian variable selection in probit model for predicting U.S. recessions. The correlation prior is assigned for the binary vector to distinguish models with the same size, and the sparse prior is specified for the coefficient parameters for the purpose of predicting accurately using fewer parameters. In terms of the quadratic probability score and the log probability score, we demonstrate that the proposed method performs better than other three methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.