Abstract
ABSTRACTHere we consider a multinomial probit regression model where the number of variables substantially exceeds the sample size and only a subset of the available variables is associated with the response. Thus selecting a small number of relevant variables for classification has received a great deal of attention. Generally when the number of variables is substantial, sparsity-enforcing priors for the regression coefficients are called for on grounds of predictive generalization and computational ease. In this paper, we propose a sparse Bayesian variable selection method in multinomial probit regression model for multi-class classification. The performance of our proposed method is demonstrated with one simulated data and three well-known gene expression profiling data: breast cancer data, leukemia data, and small round blue-cell tumors. The results show that compared with other methods, our method is able to select the relevant variables and can obtain competitive classification accuracy with a small subset of relevant genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.