Abstract

A sparse Bayesian linear regression model is proposed that generalizes the Bayesian Lasso to a class of Bayesian models with scale mixtures of normal distributions as priors for the regression coefficients. We assume a hierarchical Bayesian model with a binary indicator for whether a predictor variable is included in the model, a generalized normal prior distribution for the coefficients of the included variables, and a Student-t error model for robustness to heavy tailed noise. Our model out-performs other popular sparse regression estimators on synthetic and real data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.