Abstract
AbstractSurrogate models are used to alleviate the computational burden in engineering tasks, which require the repeated evaluation of computationally demanding models of physical systems, such as the efficient propagation of uncertainties. For models that show a strongly non‐linear dependence on their input parameters, standard surrogate techniques, such as polynomial chaos expansion, are not sufficient to obtain an accurate representation of the original model response. It has been shown that for models with discontinuities or rational dependencies, for example, frequency response functions of dynamic systems, the use of a rational (Padé) approximation can significantly improve the approximation accuracy. In order to avoid overfitting issues in previously proposed standard least squares approaches, we introduce a sparse Bayesian learning approach to estimate the coefficients of the rational approximation. Therein the linearity in the numerator polynomial coefficients is exploited and the denominator polynomial coefficients as well as the problem hyperparameters are determined through type‐II‐maximum likelihood estimation. We apply a quasi‐Newton gradient‐descent algorithm to find the optimal denominator coefficients and derive the required gradients through application of ‐calculus. The method is applied to the frequency response functions of an algebraic frame structure model as well as that of an orthotropic plate finite element model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.