Abstract

This paper presents novel sparse Bayesian learning (SBL)-based target imaging and parameter estimation techniques in monostatic multiple-input multiple-output (MIMO) radar systems for practical scenarios with insufficient observation samples and unknown target parameters. First, the SBL framework is developed for a single measurement vector setting with an underlying sparse target reflectivity parameter vector. This is subsequently extended to scenarios with multiple observation snapshots considering uncorrelated as well as correlated target reflectivity parameters. Variants are also proposed for challenging scenarios considering the presence of ground clutter. Cramer-Rao bounds are derived for the reflectivity, Doppler, and range estimates to comprehensively characterize the performance of the proposed estimation schemes. A joint parameter estimation and imaging scheme is developed based on a Taylor series expansion of the MIMO radar dictionary matrix. Simulation results demonstrate enhanced imaging and estimation accuracy of the proposed SBL schemes in comparison with the existing techniques for MIMO radar systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.