Abstract
Compound bearing fault diagnosis is an essentially challenging task due to the mutual interference among multiple fault components. The state-of-the-art methods usually take the potential fault characteristic frequencies as the prior knowledge and then try to recover every fault component by exploiting the impulse signal sparsity. However, they inevitably suffer from algorithmic degradation caused by energy leakage, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$l_{1}$</tex-math></inline-formula> -norm approximation, and/or improper parameter selection. To handle these shortcomings, in this paper, we propose a novel sparse Bayesian learning (SBL)-based method for the compound bearing fault diagnosis. We first present a new categorical probabilistic model to efficiently capture the truly-occurred fault components with a truncated feasible domain, which can greatly reduce the energy leakage effect. Then, we devise a more general SBL framework to recover the compound sparse impulse signal under the new categorical probabilistic model. The newly proposed method successfully avoids the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$l_{1}$</tex-math></inline-formula> -norm approximation and manual parameter selection, thus it can yield much higher accuracy and robustness. Both simulations and experiments demonstrate the superiority of the developed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.