Abstract

In this paper, we present a novel speech feature extraction algorithm based on a hierarchical combination of auditory similarity and pooling functions. The computationally efficient features known as “Sparse Auditory Reproducing Kernel” (SPARK) coefficients are extracted under the hypothesis that the noise-robust information in speech signal is embedded in a reproducing kernel Hilbert space (RKHS) spanned by overcomplete, nonlinear, and time-shifted gammatone basis functions. The feature extraction algorithm first involves computing kernel based similarity between the speech signal and the time-shifted gammatone functions, followed by feature pruning using a simple pooling technique (“MAX” operation). In this paper, we describe the effect of different hyper-parameters and kernel functions on the performance of a SPARK based speech recognizer. Experimental results based on the standard AURORA2 dataset demonstrate that the SPARK based speech recognizer delivers consistent improvements in word-accuracy when compared with a baseline speech recognizer trained using the standard ETSI STQ WI008 DSR features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.