Abstract

This paper investigates the use of musical priors for sparse expansion of audio signals of music, on an overcomplete dual-resolution dictionary taken from the union of two orthonormal bases that can describe both transient and tonal components of a music audio signal. More specifically, chord and metrical structure information are used to build a structured model that takes into account dependencies between coefficients of the decomposition, both for the tonal and for the transient layer. The denoising task application is used to provide a proof of concept of the proposed musical priors. Several configurations of the model are analyzed. Evaluation on monophonic and complex polyphonic excerpts of real music signals shows that the proposed approach provides results whose quality measured by the signal-to-noise ratio is competitive with state-of-the-art approaches, and more coherent with the semantic content of the signal. A detailed analysis of the model in terms of sparsity and in terms of interpretability of the representation is also provided and shows that the model is capable of giving a relevant and legible representation of Western tonal music audio signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.