Abstract
Modern metro systems in big cities have accumulated large amounts of passenger transit transaction data via the deployment of automatic fare collection (AFC) devices, which could facilitate a thorough analysis of passenger flow dynamics. To discover the underlying passenger flow patterns over all stations in an entire metro system, this paper proposes a multivariate functional principal component analysis (MFPCA) method. The functional integrity of a single daily passenger flow profile at each station is explicitly utilized, and the complex correlation among a multitude of daily passenger flow profiles from all stations is comprehensively modeled. Moreover, to simultaneously improve the interpretability of eigenvectors and mitigate the sensitivity to outliers, the MFPCA is formulated as a minimization problem with both a sparsity and a robustness penalty term. A computationally efficient algorithm is developed accordingly to obtain the eigenvectors. The superiority of our proposed sparse and robust MFPCA (SRMFPCA) is validated using a Hong Kong Mass Transit Railway (MTR) dataset. The derived sparse and smooth eigenvectors can be well interpreted as empirically meaningful passenger flow patterns. The results of our method can be further used as solid foundations for station clustering, correlation analysis and outlier identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.