Abstract

Portfolio risk management has become more important since some unpredictable factors, such as the 2008 financial crisis and the recent COVID-19 crisis. Although the risk can be actively managed by risk diversification, the high transaction cost and managerial concerns ensue by over diversifying portfolio risk. In this paper, we jointly integrate risk diversification and sparse asset selection into mean-variance portfolio framework, and propose an optimal portfolio selection model labeled as JMV. The weighted piecewise quadratic approximation is considered as a penalty promoting sparsity for the asset selection. The variance associated with the marginal risk regard as another penalty term to diversify the risk. By exposing the feature of JMV, we prove that the KKT point of JMV is the local minimizer if the regularization parameter satisfies a mild condition. To solve this model, we introduce the accelerated proximal gradient (APG) algorithm [Wen in SIAM J. Optim 27:124–145, 2017], which is one of the most efficient first-order large-scale algorithm. Meanwhile, the APG algorithm is linearly convergent to a local minimizer of the JMV model. Furthermore, empirical analysis consistently demonstrate the theoretical results and the superiority of the JMV model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.