Abstract

Many animals alter their anti-predator behavior in accordance to the threat level of a predator. While much research has examined variation in mobbing responses to different predators, few studies have investigated how anti-predator behavior is affected by changes in a predator’s own state or behavior. We examined the effect of sparrowhawk (Accipiter nisus) behavior on the mobbing response of wild blue tits (Cyanistes caeruleus) using robotic taxidermy sparrowhawks. We manipulated whether the simulated predator moved its head, produced vocalizations, or held a taxidermy blue tit in its talons. When any sparrowhawk model was present, blue tits decreased foraging and increased anti-predator behavior and vocalizations. Additionally, each manipulation of the model predator’s state (moving, vocalizing, or the presence of a dead conspecific) impacted different types of blue tit anti-predator behavior and vocalizations. These results indicate that different components of mobbing vary according to the specific state of a given predator—beyond its presence or absence—and suggest that each might play a different role in the overall mobbing response. Last, our results indicate that using more life-like predator stimuli—those featuring simple head movements and audio playback of vocalizations—changes how prey respond to the predator; these ‘robo-raptor’ models provide a powerful tool to provide increased realism in simulated predator encounters without sacrificing experimental control.Significance statementAnti-predatory behavior is often modulated by the threat level posed by a particular predator. While much research has tested how different types of predators change prey behavior, few experiments have examined how predator behavior affects anti-predatory responses of prey. By experimentally manipulating robotic predators, we show that blue tits not only respond to the presence of a sparrowhawk, by decreasing feeding and increasing anti-predator behavior and vocalizations, but that they vary specific anti-predator behaviors when encountering differently behaving predators (moving, vocalizing, or those with captured prey), suggesting that prey pay attention to their predators’ state and behavior.

Highlights

  • Many animals alter their anti-predator behavior in accordance to the threat level of a predator

  • These results indicate that different components of mobbing vary according to the specific state of a given predator—beyond its presence or absence— and suggest that each might play a different role in the overall mobbing response

  • Whether or not a sparrowhawk model was moving, calling, or had captured prey strongly affected the behavior of blue tits in this study but each affected different types of anti-predator behavior

Read more

Summary

Introduction

Many animals alter their anti-predator behavior in accordance to the threat level of a predator. While much research has examined variation in mobbing responses to different predators, few studies have investigated how anti-predator behavior is affected by changes in a predator’s own state or behavior. We manipulated whether the simulated predator moved its head, produced vocalizations, or held a taxidermy blue tit in its talons. When any sparrowhawk model was present, blue tits decreased foraging and increased anti-predator behavior and vocalizations. Each manipulation of the model predator’s state (moving, vocalizing, or the presence of a dead conspecific) impacted different types of blue tit anti-predator. These results indicate that different components of mobbing vary according to the specific state of a given predator—beyond its presence or absence— and suggest that each might play a different role in the overall mobbing response. Our results indicate that using more life-like predator stimuli—those featuring simple head movements and audio playback of vocalizations—changes how prey respond to the predator; these ‘robo-raptor’ models provide a powerful tool to provide increased realism in simulated predator encounters without sacrificing experimental control

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call