Abstract

Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) are attractive reinforcements for lightweight and high strength metal matrix composites due to their excellent mechanical and physical properties. The CNT/Ni (DM) nanocomposites exhibiting a tensile yield strength of 350 MPa (about two times that of nickel ∼ 160 MPa) and an elongation to failure ∼ 30%. In contrast, CNT/Ni (MLM) exhibited substantially higher tensile yield strength (∼ 690 MPa) but limited ductility with an elongation to failure ∼ 8%. GNP/Nickel nanocomposites were also processed via DM followed by SPS consolidation. The Ni-1vol%GNP nanocomposite exhibited the best balance of properties in terms of strength and ductility. The enhancement in the tensile strength (i.e. 370 MPa) and substantial ductility (∼ 40%) of Ni-1vol%GNP nanocomposites was achieved due to the combined effects of grain refinement, homogeneous dispersion of GNPs in the nickel matrix, and well-bonded Ni-GNP interface effectively transfers stress across metal-GNP interface during tensile deformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call