Abstract

The ceramic samples fabricated by spark plasma sintering of powder mixtures based on silicon nitride (Si3N4) were investigated. The powder mixtures were made by wet chemical methods from commercial α-Si3N4 powder (the particle size <5 μm) and Y2O3-Al2O3 sintering additive (3% to 10% wt.). Sintering was carried out at the heating rate of 50 °C/min and the load of 70 MPa until the shrinkage end. The powder mixtures and ceramic samples were characterized by scanning electron microscopy and X-ray diffraction. The shrinkage of the powder mixtures during sintering was analyzed, and the activation energy of sintering was calculated according to the Young-Cutler model. The density, microhardness, and fracture toughness of the ceramic samples were also measured. All samples had high relative densities (98%–99%), Vickers microhardness 15.5–17.4 GPa, and Palmquist fracture toughness, 3.8–5.1 MPa∙m1/2. An increase in the amount of sintering additive led to a decrease in the shrinkage temperature of the powder mixtures. The amount of β-Si3N4 in the ceramics decreased monotonically with the increasing amount of sintering additive. The shrinkage rate did not decrease to zero when the maximum compaction was reached at 3% wt. of the sintering additive. On the contrary, it increased sharply due to the beginning of the Si3N4 decomposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call