Abstract

The versatility of titanium (Ti) allows it to be employed in various industries, from aerospace engineering to medical technology, highlighting its significance in modern manufacturing and engineering processes. Spark plasma sintering (SPS) is currently being explored to enhance its properties further and broaden its application range. The current study focuses on exploring and optimizing the effect of SPS temperature (800, 900, 1000, 1100, 1200, and 1400 °C) on pure Ti sintered at 60 MPa in a controlled argon environment with a dwell time of 5 min. All the prepared samples were highly dense with a relative density above 99%, but exhibited significant variations in grain size (10 to 57 µm), tensile yield strength (488 to 700 MPa), ultimate tensile strength (597 to 792 MPa), and ductility (4 to 7%). A microstructural investigation was performed using XRD, SEM, and EDS to predict the influence of sintering temperature on the formation of different phases. The XRD patterns of all sintered samples showed the presence of single-phase α-Ti with hexagonally close-packed Ti. This work is a step forward in optimizing SPS-processed Ti's physical and mechanical properties for enhanced structural and biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.