Abstract

Spark discharge is shown to be a cyclic process of energy dissipation, with one spark in a time-connected train influenced by its relation to predecessor sparks. Spectroscopic instruments having temporal, spatial, and spectral resolution indicate that the light emission is highly ordered with cylindrical symmetry about the current-conducting spark channel. The favored spatial coincidence is between the channel and the most highly ionized and most excited species sampled from the cathode, with less ionized and less excited species emitting farther outward. Light absorption occurs to such an extent that there are full line reversals in excited states of magnesium ions, distant from the channel. Schlieren data indicate a toroidal structure in the postdischarge environment. Charge transfer, Penning ionization, and sensitized fluorescence are thought to be the chemical mechanisms responsible for the spectroscopic topography. Experiments in spectrochemical analysis based on the topography and designed for increased sensitivity, reduced matrix effects, and simpler spectra are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.