Abstract

For the management of a knowledge system, systems that automatically infer and manage scalable knowledge are required. Most of these systems use ontologies in order to exchange knowledge between machines and infer new knowledge. Therefore, approaches are needed that infer new knowledge for scalable ontology. In this paper, we propose an approach to perform rule based reasoning for scalable SHIF ontologies in a spark framework which works similarly to MapReduce in distributed memories on a cluster. For performing efficient reasoning in distributed memories, we focus on three areas. First, we define a data structure for splitting scalable ontology triples into small sets according to each reasoning rule and loading these triple sets in distributed memories. Second, a rule execution order and iteration conditions based on dependencies and correlations among the SHIF rules are defined. Finally, we explain the operations that are adapted to execute the rules, and these operations are based on reasoning algorithms. In order to evaluate the suggested methods in this paper, we perform an experiment with WebPie, which is a representative ontology reasoner based on a cluster using the LUBM set, which is formal data used to evaluate ontology inference and search speed. Consequently, the proposed approach shows that the throughput is improved by 28,400% (157k/sec) from WebPie(553/sec) with LUBM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.