Abstract
Cell interaction with the extracellular matrix (ECM) has profound influence in cancer progression. The secreted protein, acidic and rich in cysteine (SPARC) a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. This apparent paradox might result either from the biochemical properties of the different SPARC sources or from differential responses of malignant and stromal cells to SPARC. To test these hypotheses, we purified SPARC secreted by melanoma cells (hMel-SPARC) and compared its activity with different recombinant SPARC preparations, including a new one produced in insect cells. All 5 SPARC species were effective in inhibiting bovine aortic endothelial cell proliferation, adhesion and migration. We then used the melanoma-derived protein to assess SPARC effect on additional cell types. hMel-SPARC greatly impaired the proliferation of both normal and transformed human endothelial cells and exerted a moderate biphasic effect on human fetal fibroblasts proliferation, irrespective of their endogenous SPARC levels. However, SPARC had no effect on the proliferation of several human cancer cell lines regardless of their endogenous levels of SPARC expression. Importantly, downregulation of SPARC levels in melanoma cells using either an antisense RNA or a shRNA against SPARC sensitized them to hMel-SPARC addition in proliferation and migration assays, suggesting that malignant cells developed a SPARC-resistance mechanism. This was not a general resistance to growth suppressing agents, as melanoma cells with restricted SPARC expression were more resistant to chemotherapeutic agents. Thus, malignant cells expressing or not expressing SPARC developed alternative mechanisms that, in contrary to stromal cells, rendered them SPARC-insensitive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.