Abstract

We have identified secreted protein acidic and rich in cysteine (SPARC) as a potential glioma invasion-promoting gene. To determine whether SPARC alters the growth, attachment, or migration of gliomas, we have used U87T2 and doxycycline-regulatable SPARC-transfected clones to examine the effects of SPARC on (1) cell growth, (2) cell cycle progression, (3) cell attachment, and (4) cell migration, using growth curves, flow cytometry, attachment, and migration analyses on different brain ECMs, including collagen IV, laminin, fibronectin, vitronectin, hyaluronic acid, and tenascin. Our data indicate that SPARC delays tumor cell growth in the log phase of the growth curve. The clones secreted different levels of SPARC. The clone secreting the lowest level of SPARC was associated with a higher percentage of cells in G2M, whereas the clones secreting the higher levels of SPARC were associated with a greater percentage of cells in G0/G1. In comparison to the parental U87T2 clone, the SPARC-transfected clones demonstrated increased attachment to collagen, laminin, hyaluronic acid, and tenascin, but not to vitronectin or fibronectin. SPARC-transfected clones also demonstrated altered migration on the different extracellular matrix proteins. The modulation of migration, either positive or negative, was associated with changes in the level of secreted SPARC. These data suggest that SPARC may modulate glioma proliferation and invasion by modulating both the growth and migration of glioma cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.