Abstract
AbstractMicro air vehicles (MAVs) are typically of low mass and moment of inertia and have flight speeds comparable to birds and the larger insects. Such craft traverse the lower levels of the atmospheric boundary layer (ABL) which is a significantly different environment than that experienced by larger manned aircraft, which spend the majority of their time in relatively clean air and fly at speeds significantly higher than typical wind speeds in the ABL. Here a new series of measurements dedicated to understanding spatial and temporal velocity fields that MAVs experience are presented. Atmospheric wind measurements were taken by sampling four multi-hole dynamic pressure probes spanned perpendicular to the oncoming wind at spans of between 0·014m and up to 0·45m. It was noted that the variation of both longitudinal velocity and flow pitch angle against spacing followed a fractional power law and as such large variations were present even for the smallest inter-probe separations. This effect is thought to explain the increasing piloting difficulties experienced in maintaining good roll control for decreasing scales of craft.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.