Abstract
AbstractWe show that for any $\varepsilon \gt 0$ and $\Delta \in \mathbb{N}$ , there exists $\alpha \gt 0$ such that for sufficiently large $n$ , every $n$ -vertex graph $G$ satisfying that $\delta (G)\geq \varepsilon n$ and $e(X, Y)\gt 0$ for every pair of disjoint vertex sets $X, Y\subseteq V(G)$ of size $\alpha n$ contains all spanning trees with maximum degree at most $\Delta$ . This strengthens a result of Böttcher, Han, Kohayakawa, Montgomery, Parczyk, and Person.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.