Abstract
In this paper, we evaluate and compare the performance of several spanning tree routing strategies for divisible load scheduling on arbitrary graphs and derive recommendations as to which routing strategy provides a better trade-off between complexity and time performance. We consider a network comprising heterogeneous processors interconnected by heterogeneous links in an arbitrary manner. We evaluate the performance over a wide range of arbitrary dense graphs with varying connectivity and processor densities and study the effect of network scalability. In addition, we introduce a novel spanning tree routing strategy, which is referred to as minimum equivalent network spanning tree (EST), and analyze its performance. We apply the resource-aware optimal load distribution with optimal sequencing (RAOLD-OS) scheduling algorithm presented in the literature for obtaining an optimal solution. This study attempts to pool all known and applicable divisible load scheduling algorithms for arbitrary networks and presents a collective and comparative view of their performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.