Abstract

We prove that every 3-strong semicomplete digraph on at least 5 vertices contains a spanning 2-strong tournament. Our proof is constructive and implies a polynomial algorithm for finding a spanning 2-strong tournament in a given 3-strong semicomplete digraph. We also show that there are infinitely many ( 2 k − 2 ) -strong semicomplete digraphs which contain no spanning k -strong tournament and conjecture that every ( 2 k − 1 ) -strong semicomplete digraph which is not the complete digraph K 2 k ∗ on 2 k vertices contains a spanning k -strong tournament.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.