Abstract
Anti-spam technology is developing rapidly in recent years. With the emerging applications of machine learning in diverse fields, researchers as well as manufacturers around the world have attempted a large number of related algorithms to prevent spam. In this paper, we designed an effective anti-spam protection system, SpamCooling, based on the mechanism of active learning and parallel heterogeneous ensemble learning techniques. The system adopts a batch method to filter spam and can be easily incorporated with existing mail clients (MUA). It can actively obtain user feedbacks for providing users with personalized spam filtering experiences. The parallel heterogeneous ensemble method can help system achieve high spam detection rate as well as low ham misclassification rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.