Abstract

Fire following an earthquake is a threat to seismically damaged structural members with spalling of concrete cover. To evaluate the fire behaviour of the damaged members, it is important to determine the spalling length and thickness reasonably. In this paper, 16 columns were cyclically loaded to check their concrete cover spalling features. Based on the test results and PEER’s database, formulas are proposed for flexure-critical rectangular columns to approximately evaluate the spalling length and thickness of the columns’ concrete cover. Then, thermal and mechanical performance of the damaged columns in fire is numerically studied. It is found that: (a) the maximum spalling length generally increases with the increasing column’s drift ratio and axial load ratio, but it does not exhibit monotonic trend with the change in the shear span ratio and volumetric transverse reinforcement ratio; (b) the ratio of the equivalent spalling length to the maximum spalling length generally increases with the increasing column’s drift ratio and axial load ratio; and (c) fire endurance of the damaged column calculated using the equivalent model is 7–18% higher than that using the realistic model, and a discounted factor of .8 is recommended for the former.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.