Abstract

Spallation analysis is one of important research directions in impact dynamics. By combining the newly developing Peridynamics (PD) theory, the spallation phenomenon of concrete is numerically simulated using C language and MATLAB programming. The factors that may affect the spalling are verified: the type of pulse load, the geometric size of the model and the action time of pulse load. The dynamic response of spallation of three-dimensional concrete columns under different pulse loading forms (rectangular pulse, triangular pulse and exponential pulse) is analyzed. (1) Under the same impulse effect, only one spalling occurs in the rectangular pulse, and no multiple spallation occurs when the pulse amplitude increase. Exponential and triangular pulses can produce multiple spallation phenomena, and the time for the first spallation phenomenon is rectangular pulse < triangle pulse < exponential pulse. (2) The effect of the same linear triangle pulse on spalling of concrete columns with different lengths (100 mm, 200 mm and 300 mm) is analyzed. The triangle pulse can cause single or multiple spallation, which is related to the length and size of the model. (3) Finally, by changing the number of time steps of the pulse load, the different spalling phenomena of triangular pulses are analyzed. The thickness of the first layer increases significantly with the increase of the action time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.