Abstract

In this study, we formulate a mechanical model of spall fracture of copper, which describes both solid and molten states. The model is verified, and its parameters are found based on the data of molecular dynamics simulations of this process under ultrahigh strain rate of tension, leading to the formation of multiple pores within the considered volume element. A machine-learning-type Bayesian algorithm is used to identify the optimal parameters of the model. We also analyze the influence of the initial size distribution of pores or non-wettable inclusions in copper on the strain rate dependence of its spall strength and show that these initial heterogeneities explain the existing experimental data for moderate strain rates. This investigation promotes the development of atomistically-based machine learning approaches to description of the strength properties of metals and deepens the understanding of the spall fracture process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.