Abstract

The PSD-95 family of proteins possesses multiple protein binding domains, including three PDZ domains, an SH3 domain, a HOOK domain and a guanylate kinase-like (GK) domain. The PSD-95 proteins function as scaffolding proteins that link ion channels such as the N-methyl-d-aspartate-receptors (NMDA-Rs) with cytoskeletal networks and signalling molecules, thereby controlling synaptic plasticity and learning. We found that the PSD-95 family proteins interact via their GK domains with SPA-1-like protein (SPAL), a GTPase-activating protein (GAP) that is specific for Rap1. SPAL was contained within the NMDA-R-PSD-95 complex, and co-localized with PSD-95 and NMDA-R at the synapses in cultured hippocampal neurones. Furthermore, NMDA stimulation induced the dephosphorylation of SPAL in cultured hippocampal neurones. Our findings suggest that SPAL may be involved in the NMDA-mediated organization of cytoskeletal networks and signal transduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.