Abstract
SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1) are potent regulators of several transporters and ion channels. The kinases are under regulation of with-no-K(Lys) (WNK) kinases. The present study explored whether SPAK and/or OSR1 modify the expression and/or activity of the voltage-gated K(+) channel Kv1.5, which participates in the regulation of diverse functions including atrial cardiac action potential and tumor cell proliferation. cRNA encoding Kv1.5 was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild-type SPAK, constitutively active (T233E)SPAK, WNK insensitive (T233A)SPAK, catalytically inactive (D212A)SPAK, wild-type OSR1, constitutively active (T185E)OSR1, WNK insensitive (T185A)OSR1, and catalytically inactive (D164A)OSR1. Voltage-gated K(+) channel activity was quantified utilizing dual electrode voltage clamp and Kv1.5 channel protein abundance in the cell membrane utilizing chemiluminescence of Kv1.5 containing an extracellular hemagglutinin epitope (Kv1.5-HA). Kv1.5 activity and Kv1.5-HA protein abundance were significantly decreased by wild-type SPAK and (T233E)SPAK, but not by (T233A)SPAK and (D212A)SPAK. Similarly, Kv1.5 activity and Kv1.5-HA protein abundance were significantly down-regulated by wild-type OSR1 and (T185E)OSR1, but not by (T185A)OSR1 and (D164A)OSR1. Both, SPAK and OSR1 decrease cell membrane Kv1.5 protein abundance and activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.