Abstract
Previous literature on random matrix and network science has traditionally employed measures derived from nearest-neighbor level spacing distributions to characterize the eigenvalue statistics of random matrices. This approach, however, depends crucially on eigenvalue unfolding procedures, which in many situations represent a major hindrance due to constraints in the calculation, especially in the case of complex spectra. Here we study the spectra of directed networks using the recently introduced ratios between nearest and next-to-nearest eigenvalue spacing, thus circumventing the shortcomings imposed by spectral unfolding. Specifically, we characterize the eigenvalue statistics of directed Erdős-Rényi (ER) random networks by means of two adjacency matrix representations, namely, (1) weighted non-Hermitian random matrices and (2) a transformation on non-Hermitian adjacency matrices which produces weighted Hermitian matrices. For both representations, we find that the distribution of spacing ratios becomes universal for a fixed average degree, in accordance with undirected random networks. Furthermore, by calculating the average spacing ratio as a function of the average degree, we show that the spectral statistics of directed ER random networks undergoes a transition from Poisson to Ginibre statistics for model 1 and from Poisson to Gaussian unitary ensemble statistics for model 2. Eigenvector delocalization effects of directed networks are also discussed.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.