Abstract
Regular columnar joints that originate from networklike crack patterns can be observed in basalt and, on a much smaller scale, in dried starch slurry. Here, the basalt columns are idealized by a periodic array of parallel cracks driven by steady-state cooling. By means of a bifurcation analysis, the minimal possible crack spacing for sustained propagation of the crack array is calculated. It can be shown qualitatively that the minimal possible crack spacing for sustained propagation increases with decreasing velocity. This is confirmed by numerical calculations. The latent heat released at the solidification front is taken into account in the thermomechanical linear-elastic model of propagating shrinkage. Our calculations show that the solidification front is positioned not far ahead of the crack tips, which influences the result considerably. The results agree reasonably well with new measured data of basalt columns. By use of the analogy between contraction due to cooling and that due to drying the model is applied for columns in dried cornstarch, too, showing good agreement with recent experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.