Abstract

The nonlinear viscous flow problem associated with a heaving vertical cylinder with two heave plates in the form of two circular disks attached is solved using a finite difference method. Numerical experiments are carried out to investigate the spanwise length effects on the hydrodynamic properties, such as added mass and damping coefficients. Over a Keulegan–Carpenter (KC) number range from 0.1 to 0.6 at frequency parameter (β=7.869×107), calculations indicate that a KC-dependent critical value of spanwise length L/Dd (L—the distance between the disks, and Dd—the diameter of the disks) exists. A significant influence of L/Dd on the vortex shedding patterns around the disks and the hydrodynamic coefficients is revealed when L/Dd is smaller than the critical value due to strong interaction between vortices of different disks. Beyond that limit, however, both added mass and damping coefficients are shown to be rather stable, indicating the independence of the vortex shedding processes of different disks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.