Abstract
The phenomenon of edge fractures is analyzed using a fracturing process approach. Such fractures often initiated from the free surface of layered materials, and often terminate at the interface that divides the fractured layer and the matrix layer, or continue to expand along the interface, or create a peel-crack. To understand better the pattern of fractures with different spacing and the fracture mechanism, a double-layer elastic model with the same material properties with a fractured overlying layer subjected to uniaxial tension is simulated firstly. The stress distribution between two adjacent fractures is periodically distributed as a function of the ratio of the fracture spacing to the thickness of the fractured layer (S/t ratio), and homogeneous and heterogeneous material properties are considered in the simulation. The simulation results show that both the stress distribution and the critical value of fracture spacing to layer thickness ratio are affected by material heterogeneity; the S/t ratio of heterogeneous material is much smaller and it is much easier to crack compared with the homogeneous materials. In particular, the fracture saturation mechanism is analyzed by stress state change. Then a numerical simulation is carried out to reveal the fracturing process from micro-fracture formation, propagation, coalescence, nucleation, fracture infilling, fracture saturation, termination, to interface delamination. A fitting curve of the relationship between strain and spacing to layer thickness radio is obtained. It is found that infilling fractures may grow near the bottom or the free surface of the fractured layer by coalescence of micro-fractures and flaws. We also find that fracture spacing in the case of interface delamination is greater than that without interface delamination. A study of stress transition between the two layers on fracture spacing in the fracture process is also carried out, with a focus on stress transfer mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.