Abstract

This work investigates the H∞ output synchronization (HOS) of the directed coupled reaction–diffusion (R–D) neural networks (NNs) with mixed delays. Firstly, a model of the directed state coupled R–D NNs is introduced, which not only contains some discrete and distributed time delays, but also obeys a mixed Dirichlet–Neumann boundary condition. Secondly, a spacial sampled-data controller is proposed to achieve the HOS of the considered networks. This type of controller can reduce the update rate in the process of control by measuring the state of networks at some fixed sampling points in the space region. Moreover, some criteria for the HOS are established by designing an appropriate Lyapunov functional, and some quantitative relations between diffusion coefficients, mixed delays, coupling strength and control parameters are given accurately by these criteria. Thirdly, the case of directed spatial diffusion coupled networks is also studied and, the following finding is obtained: the spatial diffusion coupling can suppress the HOS while the state coupling can promote it. Finally, one example is simulated as the verification of the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.