Abstract

Normed division and Clifford algebras have been extensively used in the past as a mathematical framework to accommodate the structures of the Standard Model and grand unified theories. Less discussed has been the question of why such algebraic structures appear in Nature. One possibility could be an intrinsic complex, quaternionic or octonionic nature of the space–time manifold. Then, an obvious question is why space–time appears nevertheless to be simply parametrized by the real numbers. How the real slices of an higher-dimensional space–time manifold might be almost independent from each other is discussed here. This comes about as a result of the different nature of the representations of the real kinematical groups and those of the extended spaces. Some of the internal symmetry transformations might however appear as representations on homogeneous spaces of the extended group transformations that cannot be implemented on the elementary states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.