Abstract

For a class of linear parabolic equations we propose a nonadaptive sparse space-time Galerkin least squares discretization. We formulate criteria on the trial and test spaces for the well-posedness of the corresponding Galerkin least squares solution. In order to obtain discrete stability uniformly in the discretization parameters, we allow test spaces which are suitably larger than the trial space. The problem is then reduced to a finite, overdetermined linear system of equations by a choice of bases. We present several strategies that render the resulting normal equations wellconditioned uniformly in the discretization parameters. The numerical solution is then shown to converge quasi-optimally to the exact solution in the natural space for the original equation. Numerical examples for the heat equation confirm the theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.