Abstract

Landslide susceptibility assessment using data-driven models has predominantly focused on predicting where landslides may occur and not on how large they might be. The spatio-temporal evaluation of landslide susceptibility has only recently been addressed, as a basis for predicting where and when landslides might occur.The present study combines these new developments by proposing a data-driven model capable of estimating how large landslides may be, for the Taiwanese territory in a fourteen year time window. To solve this task, our model assumes that landslide sizes follow a Log-Gaussian probability distribution in space and time. Spatially the area is subdivided into 46074 slope units, with 14 annual timesteps from 2004 to 2018. Based on this subdivision, the model we implemented regressed landslide sizes against a covariate set that includes temporally static and dynamic properties. In the validation of our model, we nested a wide range of cross-validation (CV) procedures, such as a randomized 10fold-CV, a spatially constrained CV, a temporal leave-one-year-out CV, and a spatio-temporal CV. The final performance was described both numerically as well as in map form.Overall, our space-time model achieves interpretable and satisfying results. With the availability of more complete landslide inventories, both temporally and spatially, we envision that spatio-temporal landslide size prediction will become the next challenge for geomorphologists to finally address a fundamental component of the landslide hazard definition. And, because of it’s spatio-temporal nature, we also envision that it may lead to landslide simulation studies for varying climate scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.