Abstract

The space-time dynamics and pion--Hanbury Brown--Twiss (HBT) radii in central heavy ion collisions at CERN-SPS and BNL-RHIC are investigated within a hydrodynamic simulation. The dependence of the dynamics and the HBT parameters on the equation of state (EOS) is studied with different parametrizations of a chiral SU(3) $\ensuremath{\sigma}\ensuremath{-}\ensuremath{\omega}$ model. The self-consistent collective expansion includes the effects of effective hadron masses, generated by the nonstrange and strange scalar condensates. Different chiral EOS show different types of phase transitions and even a crossover. The influence of the order of the phase transition and of the latent heat on the space-time dynamics and pion-HBT radii is studied. A small latent heat, i.e., a weak first-order chiral phase transition, or a smooth crossover lead to distinctly different HBT predictions than a strong first order phase transition. A quantitative description of the data, both at SPS energies as well as at RHIC energies, appears difficult to achieve within the ideal hydrodynamic approach using the SU(3) chiral EOS. A strong first-order quasiadiabatic chiral phase transition seems to be disfavored by the pion-HBT data from CERN-SPS and BNL-RHIC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.