Abstract

Abstract We introduce a space-time discretization for linear first-order hyperbolic evolution systems using a discontinuous Galerkin approximation in space and a Petrov–Galerkin scheme in time. We show well-posedness and convergence of the discrete system. Then we introduce an adaptive strategy based on goal-oriented dual-weighted error estimation. The full space-time linear system is solved with a parallel multilevel preconditioner. Numerical experiments for the linear transport equation and the Maxwell equation in 2D underline the efficiency of the overall adaptive solution process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call