Abstract

Summary A new method has been developed to recognize and understand the temporal and spatial evolution of seawater intrusion in a coastal alluvial aquifer. The study takes into account that seawater intrusion is a dynamic process, and that seasonal and inter-annual variations in the balance of the aquifer cause changes in groundwater chemistry. Analysis of the main processes, by means of the Hydrochemical Facies Evolution Diagram (HFE-Diagram), provides essential knowledge about the main hydrochemical processes. Subsequently, analysis of the spatial distribution of hydrochemical facies using heatmaps helps to identify the general state of the aquifer with respect to seawater intrusion during different sampling periods. This methodology has been applied to the pilot area of the Vinaroz Plain, on the Mediterranean coast of Spain. The results appear to be very successful for differentiating variations through time in the salinization processes caused by seawater intrusion into the aquifer, distinguishing the phase of seawater intrusion from the phase of recovery, and their respective evolutions. The method shows that hydrochemical variations can be read in terms of the pattern of seawater intrusion, groundwater quality status, aquifer behaviour and hydrodynamic conditions. This leads to a better general understanding of the aquifers and a potential for improvement in the way they are managed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call