Abstract

We construct quantum field theory in an analog curved spacetime in Bose-Einstein condensates based on the Bogoliubov--de Gennes equations by exactly relating quantum particles in curved spacetime with Bogoliubov quasiparticle excitations in Bose-Einstein condensates. Here, we derive a simple formula relating the two, which can be used to calculate the particle creation spectrum by solving the time-dependent Bogoliubov--de Gennes equations. Using our formulation, we numerically investigate particle creation in an analog expanding universe which can be expressed as Bogoliubov quasiparticles in an expanding Bose-Einstein condensate. We obtain its spectrum, which follows the thermal Maxwell-Boltzmann distribution, the temperature of which is experimentally attainable. Our derivation of the analogy is useful for general Bose-Einstein condensates and not limited to homogeneous ones, and our simulation is an example of particle creations by solving the Bogoliubov--de Gennes equation in an inhomogeneous condensate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.