Abstract

A high-pulse-repetition-frequency (PRF) radar can handle the high Doppler frequencies of clutter echoes received by a fast-moving airborne radar. However, high-PRF radar causes range ambiguity. In addition, the clutter is range dependent when the airborne radar works in a forward-looking geometry. The range ambiguity and range dependence will lead to severe performance degradation of the traditional space-time adaptive processing (STAP) methods. In this paper, a vertical frequency diverse array (FDA), which applies frequency diversity in the vertical of a planar array, is explored to circumvent the range ambiguity problem in STAP radar. A range-ambiguous clutter suppression approach is devised, which consists of vertical spatial frequency compensation and pre-STAP filtering. In the vertical-FDA radar, the vertical spatial frequency depends not only on the depression angle but also on the slant range. By using this characteristic, the range-ambiguous clutter can be separated in the vertical spatial frequency domain, and then, clutter suppression is achieved for each separated range region. As a result, both problems of range ambiguity and range dependence are solved. Simulation results are provided to demonstrate the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.