Abstract
We determine the homeomorphism type of the space of smooth complete nonnegatively curved metrics on $S^2$, $RP^2$, and $\mathbb{C}$ equipped with the topology of $C^\gamma$ uniform convergence on compact sets, when $\gamma$ is infinite or is not an integer. If $\gamma=\infty$, the space of metrics is homeomorphic to the separable Hilbert space. If $\gamma$ is finite and not an integer, the space of metrics is homeomorphic to the countable power of the linear span of the Hilbert cube. We also prove similar results for some other spaces of metrics including the space of complete smooth Riemannian metrics on an arbitrary manifold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.